Oxygen-Dependent Gene Expression in Development and Cancer: Lessons Learned from the Wilms’ Tumor Gene, WT1
نویسندگان
چکیده
Adequate tissue oxygenation is a prerequisite for normal development of the embryo. Most fetal organs are exquisitely susceptible to hypoxia which occurs when the delivery of oxygen is exceeded by the actual demand. Developmental abnormalities due to insufficient supply with oxygen can result from the impaired expression of genes with essential functions during embryogenesis. As such, the Wilms' tumor gene, WT1, is among the fetal genes that are regulated by the local oxygen tension. WT1 was originally discovered as a tumor suppressor gene owing to loss-of-function mutations in a subset of pediatric renal neoplasias, known as nephroblastomas or Wilms' tumors. Wilms' tumors can arise when pluripotent progenitor cells in the embryonic kidney continue to proliferate rather than differentiating to glomeruli and tubules. WT1 encodes a zinc finger protein, of which multiple isoforms exist due to alternative mRNA splicing in addition to translational and post-translational modifications. While some WT1 isoforms function as transcription factors, other WT1 proteins are presumably involved in post-transcriptional mRNA processing. However, the role of WT1 reaches far beyond that of a tumor suppressor as homozygous disruption of Wt1 in mice caused embryonic lethality with a failure of normal development of the kidneys, gonads, heart, and other tissues. WT1 mutations in humans are associated with malformation of the genitourinary system. A common paradigm of WT1 expressing cells is their capacity to switch between a mesenchymal and epithelial state. Thus, WT1 likely acts as a master switch that enables cells to undergo reciprocal epithelial-to-mesenchymal transition. Impairment of renal precursor cells to differentiate along the epithelial lineage due to WT1 mutations may favor malignant tumor growth. This article shall provide a concise review of the function of WT1 in development and disease with special consideration of its regulation by molecular oxygen.
منابع مشابه
Over-expression of Wilm’s Tumor Gene 1 (WT1) in Iranian Patients with Acute Myeloblastic Leukemia
Background: The Wilm’s tumor gene 1 (WT1) encodes a zinc finger transcription factor that is inactivated in a subset of Wilm’s tumors. It plays a crucial role in growth, proliferation and development of some embryonic and adult organs. WT1 is expressed as a tumor associated antigen (TAA) in various types of solid and hematopoietic malignancies and can be employed as a useful marker for targeted...
متن کاملIn silico screening of G-Quadruplex Structures in Wilms tumor 1 Gene Promoter
Introduction: X-ray diffraction studies have revealed that guanines in a DNA stands may be arranged in quartet and form a structure called G-quadruplexs. Bioinformatics studies suggested the formation of G-quadruplex structure in human crucial genes, including Wilms tumor 1 (WT1). The aim of this study was to in silico analysis of the guanine-rich sequence in the promoter region of the WT1 gene...
متن کاملQuantitative Assessment of WT1 Expression by Real Time Quantitative PCR in Pediatric Patients with Acute Myeloblastic Leukemia
Background: Acute myeloid leukemia (AML) is one of myeloid malignancies which the risk increases with age increment. It is categorized based on genetic aberrations. Some of these genetic disorders can determine minimal residual diseases (MRD) and prognosis of AML patients. Wilms tumor (WT1) over expression is found in AML patients. The aim of this study was to determine the frequency of WT1 ove...
متن کاملSHOX2 and WT1 Promoter Methylation Correlates with the Lung Cancer in Iranian Patients
Lung cancer is among the most common cause of cancer death in the world. Since the disease is diagnosed in the middle or late stages of the cancer development a more efficient method for an early diagnosis of the disease is required. The main goal of this study was to investigate the correlation between aberrant promoter methylation of the two genes: SHOX2(Short stature homeobox 2) and WT1(Wilm...
متن کاملWT1 induces apoptosis through transcriptional regulation of the proapoptotic Bcl-2 family member Bak.
Wilms' tumor or nephroblastoma is believed to arise from embryonic nephrogenic rests of multipotent cells that fail to terminally differentiate into epithelium and continue to proliferate. The WT1 tumor suppressor gene, a transcription factor controlling the mesenchymal-epithelial transition in renal development, is mutated in 10% to 15% of Wilms' tumors. This potentially explains the disordere...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2011